
Heights of AVL Trees



How do we know AVL trees have O( log(n) ) operations?

Theorem: An AVL tree with height H has at least Fib(H+3)-1 
nodes, where Fib( ) is the Fibonacci function -- Fib(0)=0, 
Fib(1)=1, Fib(2)=1, Fib(3) = 2, Fib(4) = 3, Fib(5) = 5, Fib(6)=8, etc.
Proof: This is true for small values of H.  If H=0 the tree has one 
node, and H(3)-1 = 1.  If H=1 the tree must have at least 2 
nodes and Fib(4)-1 = 2.

This is the base case.  We'll do the inductive case on the next 
slide.



Suppose the theorem is true for H = 0, 1, 2, ... K  and we have 
an AVL tree with height K+1.  It must look like this:
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One of the subtrees of the root must have height K; the 
other must have height at least K-1 or the root won't satisfy 
the AVL property.  By the inductive hypothesis the taller 
subtree has at least Fib(K+3)-1 nodes and the smaller at least 
Fib(K+2)-1 nodes.



Altogether we have 1 (for the root) + Fib(K+3)-1 + Fib(K+2)-1 
nodes.  This simplifies to Fib(K+3)+Fib(K+2)-1, which is Fib(K+4)-1.
This is what the theorem says for H = K+1.  So if the theorem is 
true for all of the numbers up to K, it must be true for K+1 as well.  
This means it is true for all numbers.

Now, how big if Fib(H+3)-1??  One can show that 

Fib(n) =
𝐴𝑛−𝐵𝑛

5
where A=

1+ 5

2
≈ 1.62 and B=

1− 5

2
≈ −0.62

For large values of n Bn will be near 0, so Fib(n) is very close to  
(An)



Our theorem says that the number of nodes is exponential in 
the height, so the height is logarithmic in the number of 
nodes, i.e.

Height = O( log(n) )
Since all of our operations are implemented by walking from 
the root to a leaf and back, this means that find(), insert() and 
remove() are all O( log(n) ) operations in an AVL tree. 


